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Abstract
The predictive power of Lindblad equations for the dynamics of open systems
is discussed. In a model with only one Lindblad operator the asymptotic
state (density operator) for t → ∞ determines the Lindblad operator up to
an isometry. Hence the asymptotic state reached by Lindblad motion appears
as an input and has to be obtained from independent physical considerations
when setting up the equations of motion. To illustrate this fact we assume an
asymptotic Gibbs state (and a Hamiltonian of course) and discuss the temporal
behaviour of the statistical entropy. Numerical model calculations are presented
which show a non-monotonic behaviour of the statistical entropy during the
approach to equilibrium. As a second point in our discussion of the types of
predictions derived from Lindblad equations, we show that a certain structure of
the Lindblad operators leads to decoherence into superselection sectors. The
latter are determined by a spectral decomposition of the Hamiltonian of the
open system considered. An explicit construction of such decohering systems
is given.

PACS numbers: 03.65.Yz, 03.65.−w, 05.30.Jp

1. Introduction

The derivation of equations of motion for quantum systems proceeds on different lines of
argument depending on the problem considered. For the problem we are going to address—
the motion of open quantum systems—it seems appropriate to work in a rather general scope
of argumentation. In this sense we start by imposing general conditions to be followed by the
motion of an observable Bt in the Heisenberg picture

�t : Bt |t=0 �−→ Bt |t>0 (1)
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or by the adjoint motion �̄t of a state ρ—the density operator—describing our quantum system
in the Schrödinger picture2. As a first condition on the approach considered in this paper we
postulate the Markov condition

Condition[1]: �t1�t2 = �t1+t2

i.e. we assume a semigroup structure for the set of motions {�t |t ∈ R} parametrized by the
time t.

The second postulate to be imposed on quantum dynamical maps is the complete positivity
of the motions �t [1] which in a way expresses the notion of probability conservation in the
case of open systems

Condition[2]: �t is completely positive.

The Schrödinger equation (or the corresponding Liouville equation) follows from these
conditions if we restrict the motions �t to maps mapping pure states into pure states (for
all t) 3

�̄t : pure state �−→ pure state. (2)

Relaxing this restriction by allowing for pure-to-mixed state transitions

�̄t : pure state �−→ mixed state (3)

and assuming Condition[1,2] Lindblad [3] proved the following equations of motion,

Heisenberg : ∂tB = LB(B) (4)

for observables and

Schrödinger : ∂t� = L�(�) (5)

where the generators LB and L� are

LB = i[H, ·] +
∑

J

(
V +

J · VJ − 1

2

[
V +

J VJ , ·]+

)
(6)

L� = −i[H, ·] +
∑

J

(
VJ · V +

J − 1

2

[
V +

J VJ , ·]+

)
. (7)

We see that the very general frame set by Condition[1,2] determines the dynamics of quantum
systems; as input we have in addition to the Hamiltonian H operators VJ responsible for the
transition of pure states into mixed states—excluding the trivial case VJ = 0 or I all J . It is
the purpose of this paper to show that a predictive scheme arises if some further specifications
are introduced.

The simplest case (see [7]) arises if we restrict ourselves to only one Lindblad operator
V . We furthermore assume that V +V is invertible

V +V > 0 (8)

and commutes with the Hamiltonian

[H,V +V ] = 0. (9)

2 B and ρ are operators acting on a representation (Hilbert-) space H: B is bounded, B ∈ B(H), ρ is positive and
trace class.
3 The isometries resulting from the Stinespring theorem and mapping projectors P = |ψ〉〈ψ | (pure states)
into projectors are unitaries which, written as exp(−iHt), imply the Schrödinger equation i∂t |ψ〉 = H |ψ〉 by
Condition[1]. For a detailed exposition see [3]. The set {�t } is then the group of outer automorphisms generated by
the Hamiltonian H.
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These two assumptions are assumed to hold throughout the paper; in the case of more than
one VJ �= 0, I more complicated relations have to be formulated. The role of zero modes in
V +V will be discussed in a forthcoming paper.

We see by inspection that

W = (V +V )−1 (10)

is a stationary solution of the Lindblad equation (5)

L�(W) = 0. (11)

In general we have (there are exceptional cases which are characterized by the requirement
of renormalizations in subsectors and will be shown below to be the central clue for the
construction of models explaining the phenomenon of decoherence for Lindblad motion)

Schrödinger : �(t) −→ �stationary (12)

Heisenberg : B(t) −→ trace(Bt |t=0�stationary)I
(13)

t → ∞ for all initial states �t |t=0

where (I is the unit operator)

�stationary = W/trace(W). (14)

Considering that (W)−1/2 as given in equation (10) constitutes its absolute value we obtain
the polar decomposition (see [15]) of the operator V

V = U
√

V +V

= U(W)−1/2 (15)

where U is an isometry. We take U as unitary (i.e. we assume finite systems or additionally
V V + invertible) and get a clear-cut physical interpretation of the equation of motion:

�stationary, taken diagonal, is a probability distribution, determined by the absolute value of the
Lindblad operator V . It is approached for large times t → ∞ independently of the initial
state; U controls the approach to ∞.

We see in particular that the asymptotic configuration (12) plays the role of an input. It is
not predicted by the Lindblad equations and has to be derived from independent physical
considerations when setting up the equations of motion. The Lindblad equations predict the
temporal approach to an assumed asymptotic state.

To illustrate this process we assume the system to reach thermal equilibrium and study
the temporal behaviour of the statistical entropy. This study is of interest since it provides
an unequivocal and, to an extent, model independent answer to the question of monotonic
increase of the entropy when approaching equilibrium.

As a further demonstration of the ‘predictivity’ of the Lindblad scheme I shall discuss the
phenomenon of decoherence in the realm of the Lindblad equation by interpreting exceptional
cases in the asymptotics (12). We shall show that operators VJ can be constructed such that
for any initial condition the motion (4) or (5) leads to the decoherence of a given quantum
system into independent quantum systems. The decoherence pattern is imposed by a spectral
decomposition of the Hamiltonian. This decoherence process has the character of splitting the
original set of states into superselection sectors; a decomposition which although not controlled
by Abelian gauge groups as in the usual definition precludes the existence of physical states
as superpositions of (pure) states of separated systems. The final states of this decoherence
process are the superselected projections of the final distribution (14) (properly normalized,
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see below). A scheme can be obtained in which superselection sectors survive decoherence as
independent dynamical systems: motions in these sectors are controlled by correspondingly
projected sector-Hamiltonians. We shall not pursue this construction in this paper, but indicate
however that the clue here is the partial ‘lindbladization’ procedure described in [17].

A few remarks are in place concerning the comparision of the point of view just described
to the canonical theory of the dynamics of open systems4. To recapitulate, the starting point
of the canonical approach is the map �̂t ,

�̂t : Bt=0 �−→ trenv
(
�envU

+
t (Bt=0 ⊗ Ienv)Ut

)
(16)

where

Ut = exp(−iHtott).

The physical idea is the notion of an open system as a system embedded in a (larger) system—
the environment—and to consider the total system as closed; (16) expresses the projection of
the total dynamics on the dynamics of the open system (H, B are (bounded) observables of the
system acting in H, �env is a state, Ienv is the unit operator on Henv). The total Hamiltonian

Htot = H + Henv + H int
syst–env (17)

describes the interaction of the system with its environment.
An important property of the map �̂t is its complete positivity; it will not however

obey the Markow property Condition[1] in general. This in particular means that master
equations derived from Zwanzig pre-master equations [4] constructed using θ̂ (t) and further
assumptions adapted to the specific physical problems do not always respect the positivity
condition. Detailed insight into this problem, in particular into its importance in actual physical
applications, has been obtained in a variety of studies [2].

Implications of the structure of �̂(t) or rather of its conjugate

�̄t : �syst|t=0 −→ trenv(U(t)�syst ⊗ �envU
+(t)) (18)

for the question we are concerned with, decoherence, have been thoroughly considered. In
particular, model Hamiltonians specifying these maps have been discussed in the literature: the
Araki–Zurek [9, 10] Hamiltonian with a separable (factorized) system–environment interaction
allows a proof of decoherence (for a proper definition see below) in the trace norm limit. A
physically very interesting model has been discussed in [12], the model of a free particle
moving on a line coupled to a massless boson field; the decisive role of the infrared divergence
for decoherence (in the trace norm) has been shown. Scattering models [13] lead to interesting
results in this context.

We have not yet broached the problem of a strong system–environment interaction
when higher order perturbations in H int

syst–env play a role: to first order ‘system’ states � and
‘environment’ states �env are well-defined, e.g. Gibbs distributions for systems approaching
thermal equilibrium; to higher order, or even non-perturbatively, however the definition of
physically well-defined environment states requires a careful (conceptual) analysis. It must
be noted that the Lindblad method does not require any limitation on the ‘strength’ of the
influence of the ‘environment’ and thus on the rapidity of the approach to a final state. More
precisely speaking, scaling the VJ by a factor of λ the damping term in (6) and (7) scales
by a factor of λ2, hence the (exponential) rapidity of approach scales by the same factor (as
is immediately seen by the appropriate scaling of time and Hamiltonian). Two examples of
physical situations where strong coupling can occur might serve as illustration.

4 Fruitful and pleasant discussions with Joachim Kupsch on this subject are gratefully acknowledged.
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• Consider a collection of atoms or molecules in an atomic or molecular matrix. Here we
have periodic structures and the interaction energy is of the order of a ratio of two atomic
distances: the period of the lattice and the spatial dimension of the embedded system,
i.e. atoms or molecules. Depending on the states considered (e.g. rotational states in
molecules) a high order or even non-perturbative situation can arise.

• Consider the quark–gluon plasma near the point where it separates into stable systems—
mesons, baryons, etc. This separation point is characterized by quark–antiquark, three-
quark, five-quark configurations organized in superselection sectors characterized by
integer electric charges obeying the Gell-Mann–Nishijima relation. These states constitute
the ‘system’, strongly (at long distances because of asymptotic freedom) interacting with
plasma states as the ‘environment’.

2. Entropy and decoherence

(A) We begin by studying the temporal behaviour of the statistical entropy for open systems
approaching thermal equilibrium as predicted by the Lindblad equation. General results have
been obtained in a recent paper by Olkiewicz [6]:

• If the element �t of the semigroup (2) is contractive in the operator norm, i.e.∥∥�t1

∥∥ �
∥∥�t2

∥∥ for t2 � t1, then the von Neumann entropy S = −tr(� ln �) is non-
decreasing, i.e. S(�t�) � S(�) for all � ∈ S(H).5

• The semigroup of completely positive maps �t generated by the Lindblad equation is
contractive iff ∑

J

VJ V +
J �

∑
J

V +
J VJ

is obeyed by the Lindblad operators VJ defined in (3) and (4).
• In the finite-dimensional case a sufficient condition for monotonic behaviour is that all

Lindblad operators be normal: VJ V +
J = V +

J VJ for all J .

It does not seem clear why these conditions should be obeyed in actual physical situations
and, hence, why the entropy should not decrease during the approach to equilibrium (see also
[5]) for all times and for any experimental set-up: a scenario in which the entropy transfer
between the system and the environment is organized as a do ut des intercourse does not seem
implausible at all.

To illustrate a situation which is sufficiently general to be interesting we take the one
operator model introduced in the introduction and stipulate that our system run in an asymptotic
Gibbs state. From equations (10), (14) and (15) we conclude that V has then the form

V = U exp
(

1
2

(
βH + β

∑
αiQi

))
(19)

where we take U as unitary and assume that it is irreducible6, β and αi are the inverse
temperature and the chemical potentials respectively. We then arrive at an equation of motion
which implies that any initial state of an open system asymptotically approaches a Gibbs
distribution; given U, the time dependence of the statistical entropy is then unequivocally
predicted. This is in view of the above cited theorems the more interesting since V is
neither (operator-) bounded nor contractive. In figures 1–3 we show the result of a numerical
computation (for N-dimensional Hilbert spaces) of S = −tr(� ln �). The purpose of these

5 S(H) is the set of all positive, normalized trace class operators, i.e. CP N for finite (N + 1)-dimensional systems.
6 I.e. Ns = 1, see below, in particular equation (22).
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Figure 1. The statistical entropy as a function of time (N = 4, β = 0.1). The four curves
correspond to four different energy spectra and initial conditions chosen at random.
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Figure 2. The statistical entropy as a function of time (N = 4, β = 1). The four curves correspond
to four different energy spectra and initial conditions chosen at random.
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Figure 3. The statistical entropy as a function of time (N = 10, β = 1). The four curves
correspond to four different energy spectra and initial conditions chosen at random.

calculations is to show the occurrence of non-monotonic temporal behaviour of the statistical
entropy. In order to avoid specialization to a specific model we propose the following statistical
approach:

• We assume a canonical Gibbs distribution with the inverse temperature β.

• The Hamiltonian H, the unitary U in equation (19) and the initial state �|t=0 are Hermitian
(with eigenvalues in the interval [1, . . . , 10]), unitary and positive, normalized matrices
respectively with random entries. The real and imaginary parts of U and �t=0 are taken
in the interval [−1, . . . , 1]; a time scale is fixed by limiting the eigenvalues of the
Hamiltonian to the above interval.

A series of runs (around 50) showed non-monotonic behaviour in all cases; figures 1–3 display
some examples.

Of course, all curves approach the asymptotic equilibrium entropy S = −�stationary

ln(�stationary). Furthermore, it should be observed that the statistical entropy is by no
means a monotonically increasing function of time, at least in an early period of the system
development.
(B) We now turn to the central problem addressed in this paper, the problem of constructing
Lindblad operators VJ such that any initial state of a given system decoheres into a set of
independent systems whose composition is fixed to correspond to a specific physical situation.
Independence of these asymptotically reached systems is to be understood in the sense of
superselection rules, that is to say that pure quantum states of distinct systems do not allow
for superposition; a linear superposition formally constructed is not a quantum state of a
physically realizable system.
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I start by reiterating a result [7] obtained for finite systems: operators V can be constructed
such that the equation

LB(Bstationary) = 0

separates into a set of independent equations for B. Formally this means that the asymptotic
solution appears as a direct sum of operators acting in subspaces Hi left invariant by the
Lindblad generator: instead of (13) one obtains

B −→
∑
⊕

tracei (�iB)

tracei (�i)
Ii (20)

for

t −→ ∞
where the index i pertains to these subspaces, the �i are the projected states and the Ii are the
respective unit operators. The asymptotic state is anticipated as

�t=0 −→ �stationary

with

�stationary =
∑

i

Wi/tracei (Wi) (21)

where the Wi are the projections of (10). It should be noted that this relation is a generalization
of (14) only as far as the normalizations are concerned: since the equation of motion (4)
decays into a set of equations we are free to choose different normalizations in each sector. It
is remarkable that the normalization problem is automatically dealt with by equation (4). The
trace of the stationary state trace(�stationary) = Ns (Ns is the number of invariant subspaces)
and not unity as for the initial state trace(�initial) = 1 with which the process begins. So �t=0

in (21) has to be renormalized

�t=0 = �initial +
∑

i

(�initial,i/trace(�initial,i ) − �initial,i ).

Matrix elements of the initial configuration �initial outside the projections {i} are transported
to zero by the Lindblad motion for t → ∞ and hence are irrelevant for the asymptotic state.
These observations could be seen as first indications of a decoherence mechanism. We are
now going to prove these assertions in some detail.

We begin by a more precise formulation of the problem. Let

P =
{

Pi | PiPj = δijPi, Pi = P +
i ,

Ns∑
i=1

Pi = 1, i, j = 1 . . . Ns (finite)

}
(22)

be a spectral family (which can be extended to include a (weakly) continuous family of
projection operators [8, 9] indexed by measurable sets D ⊂ R). Let furthermore

Q = {Qj | [Qi,Qj ] = 0, for all i, j ; i, j = 1 . . .} (23)

denote the maximal Abelian subalgebra in B(H) of observables, H := Q1 taken as
Hamiltonian. A set of such operators containing H specifies a spectral decomposition

H =
∑

i

PiH̃Pi (24)

of the Hamiltonian H; since Q is maximal, H can be broken down to a diagonal by simultaneous
diagonalization.

The dynamics of the open system is said to induce decoherence into superselection sectors
[10], defined by this spectral decomposition if

�(t) −→
∑

i

Pi�asymptoticPi for t → ∞ (25)
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or

Pi�(t)Pj −→ 0 for t → ∞ and i �= j. (26)

Again I begin by dealing with the case of only one Lindblad operator which I write as

V =
∑

Vi,j

where

Vi,j = PiṼ Pj .

The choice

V =
∑

i

Vi,π[i] (27)

where π is a permutation

π(1, . . . , Ns) = (i1, . . . , iNs)

leads to decoherence (writing in short we identify the result of the operation π with the
operation and write π = [i1, . . . , iNs] and πid = [1, 2, . . . , Ns]).

The equation L�(�) = 0 now reads

L�(�) =
∑

i

PiṼ Pπ[i]�
∑

j

Pπ[j ]Ṽ
+Pj − 1

2

[∑
i

Pπ[i]Ṽ
+PiṼ Pπ[i], �

]
+

and is seen to couple mutually and exclusively the sectors Pi�Pi ,7 i.e. the elements of the block-
diagonal decomposition of � defined by the given spectral decomposition of H. Inspecting this
equation we see from (14) that �stationary has for all choices of π the form

�̄stationary =
∑

i

PiWPi. (28)

Normalizing as indicated above we reproduce (21)

�stationary =
Ns∑
i=1

PiWPi/trace(PiWPi).

Equation (20) is now derived in the following manner (see [14]); multiplying (4) from the lhs
and the rhs by8 ((V +)i,i = (Vi,i)

+)

√
W =

Ns∑
i=1

(
V +

i,iVi,i

)−1/2

and taking the trace we see that the rhs of the equation thus obtained vanishes and

trace(BW) = const

follows. Observing that B → const I for t → ∞ in each projected sector equation (20)
follows by taking this relation at t = 0 and t = ∞.

An essential element in the formulation of quantum dynamics is the notion of its
independence from the choice of basis in the representation space H. This principle is
transferred to the superselection sectors reached via the Lindblad motion (more precisely this
transfer turns these sectors into superselection sectors): starting with U+�t |t=0U leads us to

7 That is to say that there are two independent sets of equations separately coupling off-diagonals and diagonals.
8 W = ∑Ns

i=1 (V +
i,iVi,i )

−1 and equation (9) reads [Hi,Wi ] = 0 for all i, where Wi = PiWPi and Hi = PiHPi .
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U+�stationaryU and hence to9

U −→ Uasymptotic =
Ns∑
i=1

PiUPi for t → ∞ and all unitaries U on H. (29)

We see therefore that each sector carries its own quantum dynamics.
To see that the decomposition (24) is instrumental for the decoherence mechanism just

described we first observe that by construction the second term in the Lindblad generators
(6) and (7) is purely absorptive so that only the stationary solution remains at t = ∞. Had
we introduced an off-diagonal part Hl,m = PlH̃Pm (l �= m) in (23) an inhomogeneous term
would appear in the equation of motion for this (l,m) sector and hence an asymptotic mixing
of the (l, l) and (m,m) sectors would result. A new superselection sector would arise defined
on a subspace spanned by linear combinations of vectors in Hl and Hm, the representation
spaces of the (l, l) and (m,m) sectors. From our derivation it is clear that the general Lindblad
operator

L�(·) =
∑

J

(
VJ · V +

J − 1

2

[
V +

J VJ , ·]+

)

has the structure required for decoherence if the VJ all have the same form (26)

VJ =
∑

i

VJ(i,π[i]) (30)

where

VJ(i,j) = PiṼ J Pj . (31)

The equations of motion then have the same structure as in the one-operator case and the same
structure of the asymptotic solutions ensues. The choice π is irrelevant for the decoherence
pattern as is clear from the above derivation.

The last paragraph of this section is devoted to an explicit construction of the projections
employed in our decoherence mechanism. The construction presented pertains to the case of
finite (N-)dimensional Hilbert spaces H (the infinite case can be treated on similar lines using
suitably contrived bijections instead of permutations). For simplicity we start by doing the
construction in a basis of H in which H and W are simultaneously diagonal (equation (9)).
Using the polar decomposition (15) of V we get

V = U(W)−1/2

where (W)−1/2 is a diagonal matrix, U is constructed in the following manner: let
ej , j = 1, . . . , N, e1 = (1, 0, 0, . . .), e2 = (0, 1, 0, . . .), . . . be the usual basis vectors in
H, take a permutation π of (1, 2, . . . , N) and define the unitary U as

U = [eπ[1], eπ[2], . . . , eπ[N]] (32)

where the ei figure as column vectors.
The matrix representations of LB and L� read

MB = V + ⊗ V − (V +V ⊗ I + I ⊗ V +V )/2

M� = V ⊗ V + − (V +V ⊗ I + I ⊗ V +V )/2.

The role of permutations in determining the structure of stationary configurations has been
discussed in [14]; we reiterate and extend these results.

9 We have U+�|t=0U −→ ∑
i PiU

+�stationaryUPi = ∑
i PiU

+PiWPiUPi .
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• The ranks of MB or M� (both are of course equal) are determined by the structure of the
permutation π . We have

Rank(MB) = N2 − nint

where nint is the number of fixpoints in π plus the minimal number of cycles in which
cyclic interchanges of two positions in π reduce π to πid. The irreducible case alluded to
above is given whenever nint = 1.

• Interchanges are to be performed in terms of cycles. We distinguish 1-, 2-, . . . , k-cycles:
a 1-cycle is a fixpoint of the permutation, and k denotes the length of the cycle. These
cycles determine the structure of the stationary configuration (21) of the state � and
the asymptotic observable B (20): the dimensions of the subspaces Hi referred to when
deriving (20) and (21) are given by the cycle length [14].

• The rank of M�,B is

Rank(M�,B) � N2.

The minimal rank is obtained in the case of N fixpoints—the identity map, the case of
Hermitian V ; next to minimal are N − 2 fixpoints and one interchange. The maximal
rank corresponds to no fixpoint and one cyclic interchange. So we have

Rank(M�,B)|min = N2 − N Rank(M�,B)|max = N2 − 1.

• The case of overlapping cycles leads to the following rule: if a cyclic interchange has
to be followed by an interchange involving at least one member of the preceding cycle
the two cycles are melted into one which then counts for the stationary structure. If the
melted cycles are identical with the set πid then

Rank(MB) = Rank(MB)|max = N2 − 1.

Some examples will illustrate this construction; let N = 6 and πid = [1, 2, 3, 4, 5, 6].

• Take π = [2, 3, 4, 5, 6, 1] or [6, 1, 2, 3, 4, 5]; one interchange in a cycle of length 6 is
necessary so that

Bstationary = bIH.

• Take π = [3, 4, 5, 6, 1, 2] (or [5, 6, 1, 2, 3, 4]); two cyclic permutations in the two 3-
cycles [1, 3, 5] and [2, 4, 6] with the corresponding interchanges [3, 5, 1] → [1, 3, 5]
and [4, 6, 2] → [2, 4, 6] are required to attain πid. The stationary configuration of B is
reducible—not irreducible in the sense explained above—and reads

Bdstat = b1IH1,3,5 ⊕ b2IH2,4,6

where in obvious notation Hi−,j−,k denotes the subspace spanned by the i-, j -, k-axes.
• Take π = [4, 5, 6, 1, 2, 3], three interchanges in the cycles [1, 4], [2, 5] and [3, 6] are

needed in this case and we have

Bstationary = b1IH1,4 ⊕ b2IH2,5 ⊕ b3IH3,6 .

• Take [1, 4, 3, 5, 6, 2]; two cycles lead to πid: [2, 6] and [2, 4, 5] with the corresponding
interchanges [6, 2] → [2, 6] and [4, 5, 2] → [2, 4, 5]. Together with the two fixed points
[1] and [3] the melting of the two cycles implies the stationary structure

Bstationary = b1IH1 ⊕ b2IH3 ⊕ b3IH2,4,5,6 .

• Take π = [2, 4, 5, 3, 6, 1]; the cycles involved in the reduction to πid overlap and cover
the set πid. In detail we have the interchanges in the cycles [4, 5, 3] → [3, 4, 5], and
[2, 3, 4, 5, 6, 1] → πid to be performed in this order. We have overlapping cycles and
therefore an irreducible MB and nint = 1.
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Summarizing the essence of our findings we have seen that the decomposition into cycles
of a given permutation π employed in the construction of U and V provides us with a
construction of projectors Pi—{P̄ [1,3,5], P̄ [2,4,6]}, {P̄ [1,4], P̄ [2,5], P̄ [3,6]}, {P̄ [1], P̄ [3], P̄ [2,4,5,6]},
{P̄ [1,2,3,4,5,6] = IH} in the four examples given above—leading in turn to superselection sectors
as found in the formal construction described. The coefficients bi are the traces given in (20).
Leaving the assumption of a basis in H such that H and W are simultaneously diagonal we see
that the most general case is obtained by transforming this basis with the unitaries Uasymptotic

defined in (29).
Of particular interest is the observation that for simultaneously diagonal W,H and√

V +V = (δn,m

√
(n)), the Lindblad operator V corresponding to the cyclic permutation

(1, 2, . . . , N) → (2, 3, . . . , N, 1) is a finite-dimensional analogue of the customary creation
operator a+ (the first anticyclic permutation leads to the annihilation operator a); higher
cycles and anticycles lead to monomials in a+ and a respectively, a+a is the number-operator
mod (N). Thus, for each cycle in the decomposition of π separately, a ‘particle’ interpretation
can be employed in the construction of superselection sectors. Such a choice is however only
a special case, applicable only for special physical phenomena—e.g. photon distributions.
Thermalization for instance requires a different Lindblad operator (equation (19)).

3. Summary

The input required to make a Lindblad scheme for the dynamics of open systems predictive
consists of the Hamiltonian, of course, and of a set of operators, VJ , parametrizing the
absorptive part of the generator for the temporal motion of the system. In a model with only
one operator V a key for the construction of V is given by the observation that the inverse
square of its absolute value

√
(V +V ) equals the asymptotic state (density operator) reached

by the system at τ → ∞; its positivity and normalization entails a probability interpretation.
Hence we know the explicit form of the Lindblad operator up to an isometry U which we take
as unitary in our considerations (invertibility of V +V and V V + or finite systems are assumed).
Assuming thermal equilibrium for the final state, i.e. a Gibbs distribution, a fairly general
class of models remains for which the Hamiltonian H and U parametrizing the absorptive part
of the generator determine the motion. I studied the motion of the statistical entropy in toy
models acting in finite-dimensional Hilbert spaces with the Hamiltonian H and the unitary
matrices U carrying random entries. In particular, some attention to the dependence on the
inverse temperature β and on the matrices U has been given although no systematic study of
these dependences was attempted. Non-monotonic behaviour in the approach to equilibrium
has been observed, a feature which appears to be a characteristic of (one-operator) Lindblad
motion. Our numerical results can be interpreted to point to a tendency of this non-monotonic
behaviour prevailing for small β. A dependence of this phenomenon on U should also be
noted.

Our next project was a study of decoherence in Lindblad dynamics. Decoherence of
an open system into superselection sectors is generated by a spectral decomposition of the
Hamiltonian and is realized, for Lindblad motion, by the absorptive part of the generator of
temporal motion acting as a sort of filter. A general construction expressing the structure of
the VJ in terms of the initially chosen spectral decomposition of the Hamiltonian is described.
For a finite number of superselection sectors permutations play an essential role and secure
a coupling scheme for the equations of motion in which diagonals couple to diagonals: thus
the decoherence channels are coupled among themselves. For a infinite or even continuous
decoherence pattern permutations should be replaced by a suitable choice of bijections. The
superselective nature of the asymptotic states reached by equations of motion constructed in
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this way should be checked by ensuring independent invariance of expectation values in each
sector: we showed that indeed a unitary transformation for the initial state disintegrates by the
Lindblad motion into a direct sum of unitaries acting in each superselection sector. Physically
speaking this decoherence mechanism opens an interesting route to the question of dynamical
symmetry generation. We hope to come back to this problem in a future publication.
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